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Abstract

Edges are key components of any visual scene to the extent that we can recognise
objects merely by their silhouettes. The human visual system captures edge information
through neurons in the visual cortex that are sensitive to both intensity discontinuities
and particular orientations. The “classical approach” assumes that these cells are only
responsive to the stimulus present within their receptive fields, however, recent stud-
ies demonstrate that surrounding regions and inter-areal feedback connections influence
their responses significantly. In this work we propose a biologically-inspired edge de-
tection model in which orientation selective neurons are represented through the first
derivative of a Gaussian function resembling double-opponent cells in the primary vi-
sual cortex (V1). In our model we account for four kinds of surround, i.e. full, far,
iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output
signal from V1 is pooled in its perpendicular direction by larger V2 neurons employ-
ing a contrast-variant centre-surround kernel. We further introduce a feedback connec-
tion from higher-level visual areas to the lower ones. The results of our model on two
benchmark datasets show a big improvement compared to the current non-learning and
biologically-inspired state-of-the-art algorithms while being competitive to the learning-
based methods.

1 Introduction

Our ability to recognise objects is completely entangled with our ability to perceive con-
tours [24, 35]. The primary and secondary visual cortices — i.e. V1 and V2 — play a crucial
role in the process of detecting lines, edges, contours, and boundaries [22], to such extent that
an injury to these areas can impair a person’s ability to recognise objects [42]. Furthermore,
edges (a form of image gradient and sometime also referred to as “boundary” or “contour’)
are indispensable components of computer vision algorithms in a wide range of applications,
such as colour constancy [34], image segmentation [2], document recognition [21] and hu-
man detection [8].

Given its importance, many computational models have been proposed to detect edges
(for a comprehensive review refer to [24]). In its earliest form Prewitt [26] proposed a
convolutional-based image gradient to capture local changes. Marr [23] suggested a corre-
spondence between edges and zero-crossing points. Canny [S5] improved on previous algo-
rithms by incorporating non-maximum suppression and hysteresis thresholding. The greatest
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challenge faced by these classical methods is the distinction between authentic boundaries
and undesired image textures. This issue was partially addressed by local smoothing tech-
niques, such as bilateral filtering [33] and mean shift [6]. Thereafter, graph-based models
emerged, e.g. [7, 12]. More recent frameworks extract relevant cues (e.g. colour, brightness
and texture) feeding them to machine learning algorithms, such as probabilistic boosting
tree [11], gradient descent [2] and structured forest [10]. Currently, state-of-the-art algo-
rithms [3, 4, 19, 28, 38] rely heavily on deep-learning techniques.

Despite their success, learning methods suffer from two major drawbacks: (a) their per-
formance might be dataset dependant and (b) they are computationally demanding since for
every single pixel a decision must be made (in both training and testing steps) on whether it
corresponds to an edge or not. In addition to these, there is no evidence from a biological
point of view supporting the notion that edge detection is the result of such laborious learn-
ing process. On the contrary, edges have long been associated with low-level features that
are modulated by feedback from higher-level visual areas, e.g. those responsible for global
shape [22].

In line with this, a number of biologically-inspired edge detection models have been
recently proposed with promising results. Spratling [31] proposed a predictive coding and
biased competition based on the sparsity coding of neurons in V1. Wei et al. [36] pre-
sented a butterfly-shaped inhibition model based on non-classical receptive fields operating
at multiple spatial scales. Further improvement came from Yang et al. [41] who explored im-
balanced colour opponency to detect luminance boundaries. The same authors demonstrated
employing the spatial sparseness constraint, typical to V1 neurons, helps to reserve desired
fine boundaries while suppressing unwanted textures [40]. Another improvement in contour
detection originated from introducing multiple features to the classical centre-surround inhi-
bition common to most cortical neurons [39]. The introduction of feedback connections has
also been beneficial. Diaz-Pernas [9] extracted edges through oriented Gabor filters accom-
panied with top-down and region enhancement feedback layers. In this work we propose a
new edge detection model that incorporates recent knowledge of the physiological properties
of cortical neurons. Our work is novel compared to the methods mentioned above in four
main aspects: (i) we incorporate a more sophisticated set of cortical interactions which in-
cludes four types of surround, i.e., full, far, iso- and orthogonal-orientation, (ii) we account
for contrast variation of surround modulation, (iii) we model V2 neurons that pool signals
from V1 responses over a larger region corresponding to the centre and neighbouring spatial
locations, and (iv) we consider a fast-conducting feedback connection from higher visual
areas to the lower ones.

Figure 1 illustrates the flowchart of our framework. At first, the original image is con-
volved by single opponent cells in the retina and sent though the lateral geniculate nucleolus
(LGN) in the form of colour opponent channels [27]. These channels are processed by
double-opponent cells in V1 (known to be responsive to colour edges [27]), whose receptive
field (RF) are modelled through the first derivative of a Gaussian function [5]. To consider
the RF surround: we define a short range circular (isotropic) region corresponding to full
surround [22], long range iso- and orthogonal-orientation surrounds along the primary and
secondary axes of the RF [13], and we model far surround via feedback connections to en-
hance the saliency of edge features. All these interactions are inversely dependant on the
contrast of the RF centre [29]. The output signal from V1 is pooled at V2 by a contrast-
variant centre-surround mechanism applied orthogonally to the preferred direction of the V1
RF [25]. Finally, to account for the impact of global shapes on local contours [22], we feed
the output of V2 back into V1.
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Figure 1: The flowchart of our model. Balanced and imbalanced colour opponent channels
are created in the retina and sent through the LGN. Orientation information is obtained in V1
by convolving the signal with a derivative of Gaussian at twelve different angles. We model
four types of orientation-specific surround: full, far, iso- and orthogonal-orientation. In V2
the signal is further modified by input from surrounding areas in a directional orthogonal to
that of the original RF. Shape feedback is sent to V1 as an extra channel.

2  Surround Modulation Edge Detection

2.1 Retina and lateral geniculate nucleus (LGN)

Cone photoreceptor cells located at the back of the retina absorb photons at every spatial
location. Their output is processed in an antagonistic manner by further layers of single-
opponent cells (ganglion cells) and sent to the cortex through the LGN in the form of a
luminance and two chromatically-opponent channels [27], usually modelled as

SOlu(xay) = Sr(x,y) +Sg(x7y) ‘l‘Sb(X,y),
SOrg(an) = KVSr(xay) - KgSg(x7y)a

(1)
SOyb(x,y) = KpSp(x,y) — Krg (Sr(x’y)—i_sg(x’y)) ’

2

where SO represents the response of single-opponent cells, {lu,rg,yb} represent the lumi-
nance, red-green and yellow-blue opponent-channels, (x,y) are the spatial coordinates, and
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{r,g,b} are the original red, green and blue cone signals. S is the spectral response function
of each cone and can be approximated by a two dimensional Gaussian function as follows

Sn(x,y) = In(x,y) *G(x,y,0), ()

where [ is the input image, i € {r,g,b} is the index of colour channels, * denotes the convo-
lution operator and G is the Gaussian kernel, defined as

(2
202

Glx.y.0) = 5——e , 3)

with variance ¢. This Gaussian convolution is equivalent of a smoothing preprocessing stage

in computer vision which has been demonstrated to play an important role in the successive

edge detection [24].

When the chromatically-opponent input to single-opponent cells in Eq. 1 is equilibrium,
parameter k is equal to one for all channels. However, there is physiological evidence show-
ing that some types of single-opponent cells combine chromatic information in an imbal-
anced fashion [27]. The significance of these cells has also been shown in practice through
many computer vision algorithms, e.g. edge detection [40, 41] and colour constancy [14].
Following this insight, we included two imbalanced opponent-channels: SO, with Kk, = 0.7
and SOy, with K, = 0.7.

2.2 Primary visual cortex (V1)

SO channels are processed by a number of double-opponent cells in V1 that are responsive
to boundaries [27]. The response of these cells are modulated by regions beyond their RF
centres, with facilitation predominantly at low contrast and inhibition at high contrast [1, 18,
29]. Thus, we defined our orientation-tuned double-opponent cells DO as

DOC(xvyv 9) = CRC(xa))v 6) + Cc_l (xvy)SRC(xvyv 9), (4)

where c is the index of SO channels, 0 is the preferred orientation of the RF (set to twelve
evenly distributed angles in the range [0,27) [25]), CR and SR are the centre and surround
responses respectively, and { is the contrast of the RF centre approximated by the local
standard deviation of its constituent pixels. Double-opponent cells are typically modelled
in biologically-inspired algorithms by Gabor filters, [9, 31, 39], or the first derivative of a
Gaussian function, [40, 41]. We settled for the later one originally proposed by Canny [5].
Therefore, we defined the DO centre response, CR, as

¥G(x,y,0)

50 | &)

CR(x,y,0) = SO % ‘

where o is the RF size (set to 1.5 in our model corresponding to the typical RF size of
foveally-connected neurons in V1 or 0.25° of visual angle [1], which is equivalent to ap-
proximately 13 pixels when viewed from 100cm in a standard monitor).

2.2.1 Surround modulation

We defined the surround response, SR, as follows

SR(x,y,0) = LS(x,y,0) +1S(x,y,0) + OS(x,y, 0) + FS(x,y,0), 6)
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where LS is full surround referring to the isotropic region around the RF; IS denotes iso-
orientation surround along the RF preferred axis; OS is orthogonal-orientation surround in
the direction perpendicular to the RF preferred axis; and F'S denotes far surround.

Because the full surround is an isotropic region (i.e. stimulus occupying the entire sur-
rounding region rather than isolated flanking lines [22]) it can be modelled as the average
response of a circular window around the cell’s RF centre. This surround is inhibitory when
it shares the same orientation as the centre and strongly facilitatory when its orientation is
perpendicular to the centre [22]. Thus, we defined the full surround LS as

LS(x,3,8) = A8 (x,3) (CR(x.y,0.) # ) ~ £ (x,) (CR(x3.0) k1), (D)

where 6, = 6+ 7, u is the circular average kernel and A determines the strength of orthog-
onal facilitation in comparison to the iso inhibition. The former facilitation is reported to be
stronger than the later inhibition [22], therefore A must be larger than one.

The iso-orientation surround, IS, extends to a distance two to four times larger than
the RF size [13]. Within this region elements parallel to the RF preferred orientation are
facilitatory while orthogonal ones are inhibitory [13, 22], therefore, we modelled IS as

I5(5,%,0) = 6~ (x,3) (CR(x.%,0) * E(0,6) ) ~ £ (x,3) (CR(x,,01) + E(0:,0) ), (®)
where E is an elliptical Gaussian function elongated in the direction 0, defined as

E(X,y, O-X7 O-ya 9) = ei(HXZ72hxy+cy2) )

_00526 sin% @ _ sin260  sin20 _sin@2 cos 62

© 202 202 402 @ 402’ ‘T 202 20?7
We set 6, = 0.10, and o, = 30 corresponding to physiological measurements [13].

The orthogonal-orientation surround, OS, projects to a distance half of the iso-orientation
surround [13]. In the orthogonal-surround elements parallel to the RF preferred orientation
are inhibitory while perpendicular ones are facilitatory [13, 22], thus, we modelled OS as

0S(x,y,0) = ¢! (x,y) (CR(x,y7 0,) *E(GX,GJ_)) —&(x,y) (CR(x,y,G) *E(GJHGJ_)). 9)

The far surround could extend to regions up to 12.5° of visual angle [29] which is ap-
proximately equivalent to 673 pixels when viewed from 100cm in a standard monitor. Conse-
quently the feedforward and horizontal connections in V1 that mediate interactions between
the RF and its near surround are too slow to account for the fast onset of far surround. Due
to this, it has been suggested that far surround is operated through a different mechanism via
inter-areal feedback connections [1, 30]. We speculate that parts of these inter-areal connec-
tions come from spatial scale layers in V1 [16], and assume their influence to be facilitatory
when image elements in this region share the same orientation as the centre [17]. Therefore,
we defined F'S as A

FS(x..60) = {7 (xy) Y, Sl020)

s=2

(10)
s

where s is the index of the corresponding spatial frequency scale. This processing is analo-
gous to the multi-scale processing common to both visual sciences and computer vision, with
the distinction that we account for both contrast and distance, since surround modulation has
been reported to be stronger in the near than in the far regions [1].
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2.3 Visual area two (V2)

Visual processing becomes more global along the brain’s ventral pathway. In line with this,
many V2 neurons have been reported to respond to curvatures and extended arcs [37]. It has
been proposed that V2 RFs extract curvature information by pooling signals from V1 using
a centre-surround mechanism in the direction orthogonal to the V1 orientations [25, 37].
In order to model this, first, we defined the V1 response, V1R, as the most activated DO
orientation. This operation is assumed to be realised by complex cells pooling the maximum
value of DO cells [32], modelled as

V1R (x,y) = argmax (DO,(x,y,0)). an
6€[0,27)

The V2 RFs show similar contrast-variant surround modulation as those of V1 [29].
Therefore, we modelled the V2 response, V2R, through a Difference-of-Gaussians (DoG) as

VZRC(x7y) = VIRC,G(‘xay) *E(GX7 QL) - DL'(xay)VlRC,G('xvy) *E(SGX, GL) (12)

where 0 is the contrast of V1R computed by its local standard deviation, the index 6 at V1R
shows the preferred orientation of that RF. Cortical RFs increase their diameters systemati-
cally by approximately a factor of three from lower to higher areas [37]. Therefore, we set
the size of V2 RF, g, to three times the size of a V1 RF. In Eq. 12 surround is five times
larger than the centre according to physiological findings [29].

There are massive feedback connections from higher visual areas to the lower ones [1].
In our model we accounted for only a fraction of those from V2 to V1 corresponding to
the well established fact that global shape influences local contours [22]. We simulated this
global shape by averaging the V2 outputs of all channels and sending it as feedback to V1.
This feedback is processed as all other inputs to V1. The final edge map is created as a sum
of all V2 output channels

edge(x,y) = Z:V2Rc(x,y)7 with ¢ € {lu,rg,yb,rg',yb', feedback}. (13)
C

3 Experiments and results

We tested our model — termed Surround-modulation Edge Detection (SED) — on two datasets!,

the Berkeley Segmentation Dataset and Benchmark (BSDS) [2] and the Contour Image
Database (CID) [15]. The former includes two sets of colour images BSDS300 (100 test
images) and BSDS500 (200 test images). The later contains forty grey-scale images. The
ground truth of both datasets are edges manually-drawn by human subjects. We evaluated
our algorithm in the standard precision-recall curve based on their harmonic mean (referred
to as F-measure) on three criteria: optimal scale for the entire dataset (ODS) or per image
(OIS) and average precision (AP). The results we report in this paper were obtained with a
fixed set of parameters (see details in Section 2) for all datasets much in the same way as the
human visual system. Table 1 compares the results of our model to several other state-of-the-
art algorithms that have also reported theirs results on the BSDS dataset. Table 2 compares
the results of SED to four algorithms driven by low-level features on the CID dataset.

'The source code and all the experimental materials are available at https://github.com/
ArashAkbarinia/BoundaryDetection.
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In our proposal, we have modelled different areas and aspects of the visual cortex. In
order to investigate the contribution of each of the components of our model we conducted
four experiments on the BSDS500 dataset.

o Gaussian Derivative — In this scenario, we accounted neither for the surround mod-
ulation in V1, nor for the V2 pooling and feedback. Essentially only convolving the
single-opponent cells with the first derivative of Gaussian function similar to CO [41].

e Only V1 Surround - In this case, we excluded V2 pooling and feedback. We only
included full, far, iso- and orthogonal-orientation surround modulation for V1 RFs.

e No V2 Feedback — In this scenario, we excluded the feedback sent from V2 to V1,
i.e.c € {lu,rg,yb,rg',yb'} in Eq. 13.

e No Far surround — In this case, we did not account for far surround modulation, i.e.
FS=0inEq. 6.

The result of these experiments are reported in Figure 2.

BSDS300 BSDS500
Method ODS | OIS AP ODS | OIS AP
Human 0.79 | 0.79 - 0.80 | 0.80 -
Canny (1986) [5] 0.58 | 0.62 | 0.58 0.60 | 0.63 | 0.58
% Mean Shift (2002) [6] 0.63 | 0.66 | 0.54 0.64 | 0.68 | 0.56
E Felz-Hutt (2004) [12] | 0.58 | 0.62 | 0.53 0.61 | 0.64 | 0.56
§ Normalised Cuts (2005) [7] 0.62 | 0.66 | 043 0.64 | 0.68 | 0.45
|35 | PC/BC (2013)[31] | 0.61 | - - - - | -
_§ E CcO (2013) [41] | 0.64 | 0.66 | 0.65 0.64 | 0.68 | 0.64
21z | Ma (2014)[39] | 0.62 | - - Joes| - | -
© | = | dPREEN 014)[9] | 065 | - | - - - | -
SCO (2015) [40] | 0.66 | 0.68 | 0.70 0.67 | 0.71 | 0.71
oo | BEL (2006) [11] | 0.65 - - 0.61 - -
£ | gPb 201121 | 070 | 072 | 0.66 || 0.71 | 0.74 | 0.65
20 § DeepNets (2014) [19] — - - 0.74 | 0.76 | 0.76
E | G | DeepEdge o531 | - | = | = | 075|075 080
§ E DeepContour (2015) [28] - - - 0.76 | 0.77 | 0.80
Qé; & | HFL (2015) [4] - - - 0.77 | 0.79 | 0.80
& | > | HED @015 38] | - | - | = | 078 | 0.80 | 0.83
SED (Proposed) 0.69 | 0.71 | 0.71 0.71 | 0.74 | 0.74

Table 1: Results of several edge detection algorithms on the BSDS300 and BSDS500 [2].

4 Discussion

The results of our model on BSDS and CID datasets demonstrate a systematic quantitative
improvement of about 4% comparing to the state-of-the-art biologically-inspired algorithms
in all three criteria of ODS, OIS and AP (see Tables 1 and 2). This improvement is also
qualitatively evident in Figure 3. On the one hand, our model shows greater robustness in
textural areas in comparison to CO [41] as it is evident in the rocks image (third row) and the
grass image (fourth row). On the other hand, thanks to its surround modulation, SED does a
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CID
Method ODS | OIS | AP
Canny [5] 0.56 | 0.64 | 0.57
CcO [41] | 0.55 | 0.63 | 0.57
MCI  [39] | 0.60 | 0.63 | 0.53| |
SCO [40] | 0.58 | 0.64 | 0.61 | [ 075
SED 0.65 | 0.69 | 0.68 Original Ground Truth SED

Table 2: Results of five edge detection algorithms on the CID dataset [15]. On the right: one
example result of our model is shown with the F-measure on the right bottom corner.

Original image Gaussian Derivative Only V1 Surround

0.69 0.68 0.72

0T No V2 Feedback No Far Surround Full Model
Figure 2: Evaluation of the different components of SED. The graph on the left is the
precision-recall curve on the BSDS500. In the legends the ODS F-measures are indicated.
The images on the right show the result of our full model on one exemplary image along with
the four experiments we conducted. F-measures are on the right bottom corner of images.

better job at detecting continuous lines, compared to SCO [40] which is evident for images
in the second and fourth rows where the land and sea boundaries are more clearly defined.

Our improvements over the state-of-the-art originates from the combination of different
components of our model. The precision-recall curve in Figure 2 shows that excluding sur-
round modulation and the V2 module all together drops the ODS F-measure to 0.63 (black
curve). This is in line with the results of CO [41] which essentially is same as our model
in the absence of V1 surround modulation and the V2 module. Including surround modula-
tion (i.e. full, far, iso- and orthogonal-orientation regions) raises the F-measure to 0.67 (pink
curve). This clearly shows that surrounding regions play a crucial role in edge detection in
agreement with previous psychophysical findings [22].

Comparison of “Only VI Surround” and “No V2 Feedback” pictures in Figure 2 reveals
that the V2 module strongly assist the process of eliminating textures. This is consistent
with physiological findings that suggest texture statistics might be encoded in V2 [20] and
could be explained by the fact that V2 RFs are large and therefore suppress tiny textural
pixels. Although V2 centre-surround suppression is beneficial in general (2% improvement
in F-measure of the red curve in comparison to the pink one), it causes occasional over-
smoothing and consequently in high recalls the precision of the pink curve is higher than the
blue one. We postulate that this problem can be addressed by a mechanism similar to the
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Figure 3: Edge detection results of three biologically-inspired methods. The F-measure is
indicated on the right bottom corner. The first two rows show results for a picture from the

BSDS300 dataset and the last two rows from BSDS500 dataset.

visual cortex where suppression can change to facilitation at low contrast levels [1]. Mod-
elling this phenomenon is onerous since the threshold between suppression and facilitation
is cell specific and there is no universal contrast level or surround stimulus size that triggers
facilitation across the entire cell population [1]. We propose this as a line of future work.

The precision-recall curve in Figure 2 shows that excluding far surround modulation re-
duces the ODS F-measure to 0.69 (blue curve), which still is better than other non-learning
state-of-the-art algorithms. A qualitative comparison of “No Far Surround” and “Full
Model” results reveals that far surround appears to play an important role in enhancing con-
tinuous edges while suppressing broken ones. We observe similar patterns with V2 surround
modulation. In high recall “No Far Surround” has a higher precision than “Full Model”
(blue versus green curves). Resolving this is a subject for further investigation.

5 Conclusion

In this paper, we presented a biologically-inspired edge detection model grounded on physi-
ological findings of the visual cortex. Our main contributions can be summarised as follows:
(i) modelling a contrast-dependant surround modulation of V1 receptive fields by accounting
for full, far, iso- and orthogonal-orientation surround; (ii) introducing a V2 centre-surround
mechanism to pool V1 signals in their perpendicular orientations; and (iii) accounting for a
shape feedback connection from V2 to V1. We quantitatively compared the proposed model
to current state-of-the-art algorithms on two benchmark datasets. Our results show a sig-
nificant improvement compared to the other non-learning and biologically-inspired models
while being competitive to the learning ones.

The results of our experiments suggest that V1 surround modulation strengthens edges
while V2 contributes to the suppression of undesired textural elements. We can further
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improve our model by accounting for the complex shape processing occurring in V4, for
example, by concentric summation of V2 signals [37]. Moreover, within our framework
we treat different surrounds as individual entities with no interactions between them. This
simplification does not consider psychophysical studies showing the non-linear interactions
that occur between surround and central regions which depend on the configurations of both
inducers and targets [22]. This will be the subject of a future line of work to account for
these configurational settings by relating full, iso- and orthogonal-orientation surrounds.

Biologically-inspired solutions such as the one presented here make two contributions,
one technological (pushing forward state-of-the-art) and the other scientific (understanding
the relationship between the human visual system and the visual environment). The more
we learn about the properties of the human visual system the better we can explain visual be-
haviour. Within our limitations (both in knowledge and resources) we have tried to keep our
modelling decisions as close as possible to what we know about the physiology, in two main
respects: (a) our architecture reflects the low-level features that are common to mammalian
cortical architecture and emerged after millions of years of evolution (i.e. are not ad-hoc or
dataset-dependant) and (b) our model parameters are the same in all experiments, which is a
feature of how the human visual system operates.
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